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Abstract

The time dependence of spontaneous quantum tunneling of a particle from a
potential well through a barrier in one or three dimensions is studied on the
basis of the solution of the time-dependent Schrödinger equation as an initial-
value problem by the method of Laplace transform. The wavefunction in the
outer space is expressed in terms of special functions known from the theory of
classical diffusion. A concise expression is derived for the probability current
into the outer space. At long times the current oscillates about zero before
decaying with a t−4 long-time tail. A comparison is made with the solution
obtained by an expansion of the initial wavefunction in terms of the complete
set of scattering states and bound states.

PACS numbers: 03.65.Xp, 03.75.Lm, 31.70.Hq, 82.20.Xr

1. Introduction

In quantum mechanics a particle, located initially in a region separated by a potential barrier
from the rest of space, can escape the region, even if its energy is much less than the height of
the barrier. The phenomenon was demonstrated by Hund [1] for internal rearrangements of
molecules, such as ammonia. In early work on α-decay, Gamow [2] suggested that the rate of
decay due to quantum tunneling could be calculated from the complex energy corresponding
to an approximate solution of the time-independent Schrödinger equation. He used the WKB-
method to find the approximate solution, and hence derived an expression for the rate [3]. It
was argued by Born [4] and Casimir [5] that the dynamics of escape should be understood
from the solution of the time-dependent Schrödinger equation, regarded as an initial-value
problem. A thorough review of the theory developed in later years has been presented by
Razavy [6].

In many situations in solid-state physics and chemistry the tunneling is stimulated by
coupling to other degrees of freedom, such as phonons or molecular vibrations, causing
dissipation and random forces. In such situations it is usually necessary to consider a thermal

1751-8113/08/445302+19$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/44/445302
mailto:ufelder@physik.rwth-aachen.de
http://stacks.iop.org/JPhysA/41/445302


J. Phys. A: Math. Theor. 41 (2008) 445302 B U Felderhof

ensemble of initial states. The corresponding theory has been reviewed by Hänggi et al [7],
Weiss [8] and Nitzan [9].

Here we consider only the relatively simple case of spontaneous tunneling of a single
particle under the influence of a fixed potential. The initial wavefunction is taken to be the
ground state or an excited state for a modified potential, consisting of the original potential
plus an infinite barrier confining the particle. The initial-value problem suggested by Born
and Casimir was solved some years ago for simple model potentials by Garcı́a-Calderón et al
[10] and van Dijk and Nogami [11]. Garcı́a-Calderón et al [10] expanded the wavefunction
in the potential region for positive time in terms of Gamow states. van Dijk and Nogami [11]
expanded the wavefunction in terms of the complete set of scattering solutions and bound states
of the Hamilton operator. It is clear that in principle such an expansion provides the exact
solution of the problem for all time. However, technical problems remain in the extraction of
the desired information, such as the mean escape time.

In the following, we obtain the exact solution in a simplified form. The solution of van Dijk
and Nogami [11] involves incoming waves, which seems counterintuitive in the description of
the decay of a metastable state. We solve the initial-value problem by the method of Laplace
transform. First, this has the advantage of a concise form for the solution. Second, it makes
clear that the decay involves only outgoing waves and bound states. The connection with the
solution of van Dijk and Nogami is made clear in section 6. In their solution the incoming
waves serve to build up the initial state.

We also simplify the extraction of desired information on the time dependence of the
probability of occupation of the well by concentrating on the probability current at the boundary
with the outer space. The wavefunction in the outer space is expressed in terms of a sum
of special functions which also appear in the related classical diffusion problem [12, 13], as
described by the Smoluchowski equation. The special functions are related to the Moshinsky
function [14].

The analysis is performed for the one-dimensional Schrödinger equation. By a well-
known transformation it applies also in three dimensions for a centrally symmetric potential,
provided the initial wavefunction is isotropic, i.e. for S-wave symmetry.

In general, the time dependence of the decaying occupation probability or occupancy is
non-exponential. Although this is not surprising at short times, it is also true at long times, in
contrast to the expectation of some [15]. At very long times the occupancy decays with a t−3

power law [16–18]. It was found by Winter [29] and van Dijk and Nogami [11] for specific
models that the occupancy oscillates in time before the power law sets in. We confirm their
finding and explain it as an interference phenomenon of sums of at least two fundamental
wave modes.

Another approach to the tunneling problem has been proposed by Gurvitz [30], and further
elaborated by Gurvitz et al [19]. The method is based on a different modified potential, and
a different initial wavefunction than used here. The formalism presented here appears to be
more straightforward. We show in sections 4 and 5 that for model potentials the resonance
energy and half-width in the Breit–Wigner formula can be calculated exactly. The method of
Gurvitz et al makes use of perturbation theory and yields an approximation to the exact result.
The approach of Gurvitz et al has been extended to the many-body problem by Al-Khalili
et al [20].

2. Escape from a one-dimensional potential

We consider the motion of a particle in one dimension in a potential V (x), as described by the
Schrödinger equation for the wavefunction ψ(x, t). Putting h̄ = 1 we have for a particle of
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mass m

i
∂ψ

∂t
= − 1

2m

∂2ψ

∂x2
+ V (x)ψ(x, t). (2.1)

We assume that the potential tends to +∞ as x → −∞ and vanishes beyond a cutoff-point
c > 0. We shall solve equation (2.1) as an initial-value problem for t > 0 for a given
initial wavefunction ψ(x, 0), constructed from an eigenfunction of a modified Hamiltonian
operator Hm = p2/(2m) + Vm(x), with a modified potential Vm(x). The modified potential
Vm(x) is identical with V (x) for x < c, but leads to confinement and to a discrete set of
eigenfunctions {ϕmj (x)} with eigenvalues {Emj }, enumerated by an index j = 0, 1, 2, . . .

according to ascending energy, starting with the ground state ϕm0(x) at energy Em0. For
example, we require the potential Vm(x) to tend to +∞ at x = c, or we choose it to increase
to +∞ as a parabola for x > c. Thus, the function ϕmj (x) satisfies the time-independent
Schrödinger equation

− 1

2m

d2ϕmj

dx2
+ Vm(x)ϕmj (x) = Emjϕmj (x) (2.2)

on the interval −∞ < x < c, or even on the interval −∞ < x < ∞. The initial wavefunction
is chosen as

ψ(x, 0) = ϕmj (x) for x < c,

= 0 for x > c. (2.3)

The function is taken to be real. In most of our examples, we shall consider the ground state
ϕm0(x).

We solve the Schrödinger equation (2.1) by Laplace transform. It is convenient to consider
the complex conjugate wavefunction ψ∗(x, t). We write

f (x, t) = ψ∗(x, t) (2.4)

in order to avoid confusion with the asterisk. The Laplace transform is defined as

f̂ (x, s) =
∫ ∞

0
e−stf (x, t) dt. (2.5)

Then, f̂ (x, s) satisfies the equation

isf̂ (x, s) = ν
d2f̂ (x, s)

dx2
− V (x)f̂ (x, s) + iψ(x, 0), (2.6)

with ν = 1/(2m). Since both V (x) and ψ(x, 0) vanish for x > c, the solution for this region
can be written as

f̂ (x, s) = B e−ik(x−c), for x > c (2.7)

with k = −i
√

is/ν and s-dependent coefficient B. The variable k is defined such that B(s) has
a branch cut along the positive imaginary axis in the complex s plane. With ψ(x, 0) given by
equation (2.3), a solution of the inhomogeneous differential equation (2.6) for x < c is given
by

φ(x, s) = 1

s − iEmj

ϕmj (x). (2.8)

Therefore, the solution of equation (2.6) satisfying the boundary condition at x = −∞ takes
the form

f̂ (x, s) = φ(x, s) + Afr(x, s), for x < c, (2.9)

3
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where fr(x, s) is a solution of the homogeneous differential equation which tends to zero
as x → −∞. The normalization of the latter solution may be chosen conveniently. The
coefficients A in equation (2.9) and B in equation (2.7) are determined from the conditions
that f̂ (x, s) and its derivative with respect to x are continuous at x = c. This yields

A = 1

s − iEmj

−ikϕmj (c) − ϕ′
mj (c)

f ′
r (c, s) + ikfr(c, s)

,

(2.10)

B = 1

s − iEmj

f ′
r (c, s)ϕmj (c) − fr(c, s)ϕ

′
mj (c)

f ′
r (c, s) + ikfr(c, s)

,

where the prime denotes the derivative with respect to x. Clearly, the coefficient B is
independent of the normalization chosen for the function fr(x, s). The wavefunction f (x, t)

is given by the inverse Laplace transform

f (x, t) = 1

2π i

∫ i∞+ε

−i∞+ε

est f̂ (x, s) ds, (2.11)

with ε sufficiently positive so that the path of integration in the complex s plane is to the right
of all singularities of the integrand.

In particular, for x > c

f (x, t) = 1

2π i

∫ i∞+ε

−i∞+ε

B(s) e−ik(x−c)+st ds (x > c). (2.12)

With the change of variables s = −iω the inverse Laplace transform in equation (2.11) may
also be expressed as the Fourier transform

f (x, t) = 1

2π

∫ ∞+iε

−∞+iε
e−iωt f̂ (x,−iω) dω. (2.13)

In the outer region x > c

f (x, t) = 1

2π

∫ ∞+iε

−∞+iε
B(−iω) e−ik(x−c)−iωt dω (x > c) (2.14)

where k = −i
√

ω/ν. The integrand has a branch cut along the negative real ω axis.
From the conjugate wavefunction f (x, t) in the outer region, we can evaluate the

occupancy P(t) of the inner region from

P(t) = 1 −
∫ ∞

c

|f (x, t)|2 dx, (2.15)

since probability is conserved. In earlier works [6, 10, 11] the quantity P(t) has been called
the nonescape probability, but we avoid this nomenclature, since before time t the particle can
escape and return to the inner region any number of times. The occupancy P(t) equals unity
at t = 0. In case there are bound states it tends to a constant P∞, otherwise it tends to zero as
t → ∞. The mean escape time τM may be defined by

τM =
∫ ∞

0
(P (t) − P∞) dt/(1 − P∞). (2.16)

In general, the decay is non-exponential.
In order to calculate the survival probability

S(t) =
∣∣∣∣
∫ c

−∞
ψ(x, t)ψ(x, 0) dx

∣∣∣∣
2

(2.17)

one needs the wavefunction in the inner region. In examples this can be evaluated as well by
the use of equation (2.9). We recall that we have chosen the initial wavefunction ψ(x, 0) to
be real.
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In order to calculate the time-dependent occupancy P(t), it is not necessary to perform
the integration in equation (2.15). As a consequence of the Schrödinger equation the rate of
change is given by

dP

dt
= −J (t), (2.18)

with probability current at x = c

J (t) = 1

2mi

[
ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)

∂x

]∣∣∣∣
x=c

. (2.19)

Thus, it is sufficient to evaluate the wavefunction and its spatial derivative at the exit point
x = c. We abbreviate

F(t) = f (c, t), G(t) = − ∂

∂x
f (x, t)

∣∣∣∣
x=c

. (2.20)

With this notation

J (t) = 2ν�F ∗(t)G(t). (2.21)

By the use of Parseval’s theorem [21]

1 − P∞ = ν

π
�

∫ ∞+iε

−∞+iε
F̂ ∗(−iω)Ĝ(−iω) dω. (2.22)

Here and in the following the limit ε → 0+ is understood. The functions F̂ (−iω) and Ĝ(−iω)

are related by

F̂ (−iω) = B(−iω), Ĝ(−iω) =
√

ω/νB(−iω), (2.23)

so that we can rewrite equation (2.22) as

1 − P∞ =
√

ν

π
�

∫ ∞+iε

−∞+iε

√
ω|B(−iω)|2 dω. (2.24)

The square root has an imaginary part on the negative frequency axis, so that we can rewrite
this as

1 − P∞ =
∫ ∞

0
g(E) dE, (2.25)

where

g(E) = lim
ε→0

1

π

√
νE|B(iE + ε)|2 (2.26)

may be interpreted as the energy spectrum of the decay.
Alternatively, the mean escape time may be defined from

(1 − P∞)τM =
∫ ∞

0
tJ (t) dt. (2.27)

Again it is convenient to transform this into an integral over frequency by the use of Parseval’s
theorem. This yields

(1 − P∞)τM = ν

π
�

∫ ∞+iε

−∞+iε

dF̂ ∗(−iω)

dω
Ĝ(−iω) dω. (2.28)

Bound states lead to a divergent contribution to the integral. We return to this point in
section 6. The time dependence of the decay may be found from equations (2.18) and (2.21).
In the following we derive explicit expressions for the functions F(t) and G(t).
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3. Mode analysis

In order to find the time dependence of the decay we must study the analytic properties of
the exit amplitude B(s). As noted above, the function has a branch cut along the positive
imaginary s axis. There is no singularity at s = iEmj , since the numerator in equation (2.9)
vanishes at this point. We define the dispersion function

Z(k) = f ′
r (c, iνk2) + ikfr(c, iνk2). (3.1)

The zeros of Z(k) give rise to singularities in B(s). We write the function B(s) in the form

B(iνk2) = B(0)�(k), �(k) = U(k)

Z(k)
, (3.2)

so that �(k) has the property �(0) = 1. The denominator Z(k) is independent of the initial
wavefunction ψ(x, 0), and is determined by the potential V (x). The numerator U(k) depends
on the initial wavefunction. We note that the condition Z(k) = 0 can be expressed as

f ′
r (c, iνk2)

fr(c, iνk2)
= −ik. (3.3)

This can be interpreted as a matching condition at the exit point x = c between the
logarithmic derivative of the regular solution of the Schrödinger equation for x < c and
of the outgoing wave exp(−ikx) for x > c. (Recall that we are considering the complex
conjugate wavefunction.)

It turns out that in examples the function �(k) may have branch cuts in the complex k
plane, but is analytic about k = 0. We may therefore expand as

�(k) = 1 + m1k + m2k
2 + m3k

3 + O(k4). (3.4)

We assume that the potential V (x) is such that the function �(k) can be written as a sum of
simple poles

�(k) =
∑

j

Aj

k − kj

. (3.5)

In the case of branch cuts the contribution from the cuts takes the form of an integral, which
is assumed to be comprised in the above sum. The amplitudes {Aj } and poles {kj } satisfy the
sum rules ∑

j

Aj = 0,
∑

j

Aj

kj

= −1,
∑

j

Aj

k2
j

= −m1. (3.6)

The first sum rule follows from the fact that �(k) tends to zero faster than 1/k as k → ∞.
The last two follow from equation (3.4). The poles are the complex conjugates of those of the
scattering amplitude S(k). Hence bound states correspond to poles on the negative imaginary
k axis [15]. There may also be poles on the positive imaginary k axis, as well as conjugate pairs
in the upper half of the complex k plane located symmetrically with respect to the imaginary
axis. The amplitudes {Aj } depend on the initial wavefunction, but the poles {kj } do not. The
poles depend only on the potential V (x).

We evaluate the integral by the use of the pole decomposition of B(−iω) and the identity

1

2π

∫ ∞+iε

−∞+iε
e−iωt e−αx

α − q
dω = N0(−iν, q; x, t) (t > 0, ν > 0) (3.7)

with on the left-hand side α = √
ω/ν and complex q = q ′ + iq ′′ with q ′ < 0. The function on

the right-hand side is given by

N0(μ, q; x, t) =
√

μ

πt
e−x2/4μt + qμ e−qx+μq2t erfc

(
x

2
√

μt
− q

√
μt

)
. (3.8)

6
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The validity of equation (3.7) can be checked by numerical integration. The function
N0(μ, q; x, t) occurs in item 12 in the table of Laplace transforms in the monograph by
Carslaw and Jaeger [12], and can be expressed as

N0(μ, q; x, t) =
√

μ

πt
e−x2/4μt + qN1(μ, q; x, t), (3.9)

with the function

N1(μ, q; x, t) = μ e−qx+μq2terfc

(
x

2
√

μt
− q

√
μt

)
. (3.10)

The function N1(μ, q; x, t) is related to the Moshinsky function [11, 14] M(k, x, t) by

N1(−i, ik; x, t) = −2iM∗(k∗, x, t) (3.11)

for real x and t. The notation Nn(μ, q; x, t) for n = 0, 1, 2, . . . was introduced in work on
escape by classical diffusion [12]. The functions of higher order n find application in the
problem of escape in three dimensions with centrally symmetric potential and anisotropic
initial conditions.

The identity equation (3.7) can be used for those poles kj which lie in the upper half k
plane. For the poles on the negative imaginary axis, corresponding to bound states, we need a
modification. For a pole at −iκ with κ > 0, we use the identity

1

α − κ
= 2κ

α2 − κ2
+

1

α + κ
(3.12)

and the corresponding integral

1

2π

∫ ∞+iε

−∞+iε
e−iωt 1

α − κ
dω = −2iνκ e−iνκ2t + N0(−iν,−κ; 0, t) (κ > 0, t > 0).

(3.13)

We extend this to x > 0 in the identity

1

2π

∫ ∞+iε

−∞+iε
e−iωt e−αx

α − κ
dω = −2iνκ e−κx−iνκ2t + N0(−iν,−κ; x, t) (κ > 0, t > 0).

(3.14)

It is easily checked that both sides satisfy the conjugate Schrödinger equation in the space
x > 0. The wavefunction f (x, t) for x > c can be expressed as

f (x, t) = fw(x, t) + fos(x, t) (x > c) (3.15)

where the first term is a sum of dispersive waves, and the second is a sum of oscillating terms
arising from the bound states. Explicitly, the first term is

fw(x, t) = iB(0)
∑

j

AjN0(−iν, ikj ; x − c, t) (x > c) (3.16)

and the second term is

fos(x, t) = 2νB(0)
∑
j∈bs

Ajκj e−κj (x−c)−iνκ2
j t (x > c) (3.17)

where the sum is over the bound states. By using the first sum rule in equations (3.6) and
(3.9), the sum over dispersive waves can be simplified to

fw(x, t) = −B(0)
∑

j

AjkjN1(−iν, ikj ; x − c, t) (x > c). (3.18)

7
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At x = c, we have

N1(−iν, ik; 0, t) = −iν eiνk2t erfc(−ik
√−iνt) = −iνw(k

√−iνt), (3.19)

with the w-function [22] w(z). The value of the derivative is
∂

∂x
N1(−iν, ik; x − c, t)

∣∣∣∣
x=c

= −N0(−iν, ik; 0, t), (3.20)

where

N0(−iν, ik; 0, t) =
√−iν

πt
+ νkw(k

√−iνt). (3.21)

Hence the functions F(t) and G(t), defined in equation (2.20), take the form

F(t) = Fw(t) + Fos(t), G(t) = Gw(t) + Gos(t), (3.22)

with separate contributions

Fw(t) = iνB(0)
∑

j

Ajkjw(kj

√−iνt), Fos(t) = 2νB(0)
∑
j∈bs

Ajκj e−iνκ2
j t ,

(3.23)
Gw(t) = −νB(0)

∑
j

Ajk
2
jw(kj

√−iνt), Gos(t) = 2νB(0)
∑
j∈bs

Ajκ
2
j e−iνκ2

j t .

We have again used the first sum rule in equation (3.6). In Fw(t) and Gw(t) the sum is over
all modes, including the bound states. The functions have the alternative expressions

Fw(t) = iB(0)
∑

j

AjN0(−iν, ikj ; 0, t),

(3.24)
Gw(t) = −B(0)

∑
j

AjkjN0(−iν, ikj ; 0, t),

where we have used equation (3.16) and

∂

∂x
N0(−iν, ik; x, t)

∣∣∣∣
x=0

= −ikN0(−iν, ik; 0, t). (3.25)

The w-function has the property w(0) = 1, whereas the function N0(−iν, ikj ; 0, t)

diverges as 1/
√

t for small t due to the first term in equation (3.21). Nonetheless, the
expressions in equation (3.24) are preferable to those in equation (3.23), since for t > 0 the
sums in equation (3.24) converge faster. It is clear by a comparison with equation (2.35) of
Garcı́a-Calderón et al [10] that these authors use an expansion of type (3.23). van Dijk and
Nogami [11], in effect, use an expansion of type (3.24).

At large z, the w-function decays as [22]

w(z) = i√
πz

[
1 +

1

2z2

]
+ O

(
1

z5

) (
z → ∞,−5π

4
< arg z <

π

4

)
. (3.26)

The function N0(−i, ik; 0, t) decays as t−3/2 for large t. By using the last two sum rules in
equation (3.6), one finds that the coefficient of the leading term in the product F ∗

w(t)Gw(t)

proportional to t−3 is a pure imaginary number times m1. By the symmetry properties of the
function �(k) the coefficient m1 is purely imaginary. Hence in the imaginary part �F ∗

w(t)Gw(t)

the term of order t−3 cancels out. As a consequence, the current Jw(t) decays in proportion
to t−4, and the corresponding occupancy Pw(t) decays in proportion to t−3.

In principle, in equation (3.16), the wavefunction is decomposed into an infinite sum
of running waves. By the choice of the initial wavefunction ψ(x, 0) = ϕmj (x) the energy
spectrum of the outgoing waves, as given by equation (2.25), will be sharply peaked about a
resonance energy Emj corresponding to the initial state. We demonstrate this in the following
for models which allow a detailed solution.

8
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4. Time-dependent occupancy

In this section, we study the time-dependent occupancy P(t) in more detail. We define
a typical timescale for the escape and compare with the mean escape time τM . As
an illustration we consider a simple model with a potential consisting of a hard wall at
x = 0, where the wavefunction is required to vanish, and a repulsive delta-function potential
V (x) = (λ/a)δ(x − a) located at a > 0 of strength (λ/a) > 0. The model has been studied
by Petzold [22], Winter [29], Garcı́a-Calderón et al [10], and van Dijk and Nogami [11].

There are no bound states for this model. As an initial wavefunction ψ(x, 0), we choose

ϕm0(x) =
√

2

a
�(x)�(a − x) sin

πx

a
, (4.1)

where �(x) is the Heaviside step-function, corresponding to the ground state of the particle
confined to the interval 0 < x < a. The ground-state energy is Em0 = νπ2/a2. The function
fr(x, s) in equation (2.9) is given by

fr(x, s) = sin kx, for 0 < x < a,

= P sin kx + Q cos kx, for x > a, (4.2)

with coefficients

P = 1 +
λ

νka
sin ka cos ka, Q = − λ

νka
sin2 ka. (4.3)

We take the exit point c just to the right of x = a. Then one finds for the exit amplitude B(s)

an expression of the form (3.2) with numerator

U(k) = π2(ν + λ)

νa

sin ka

π2 − k2a2
(4.4)

and denominator

Z(k) = k cos ka +

(
λ

νa
+ ik

)
sin ka. (4.5)

At s = 0

B(0) = i
√

2

π

a3/2

ν + λ
. (4.6)

The expansion coefficient m1 in equation (3.4) is given by

m1 = −i
νa

ν + λ
. (4.7)

The zeros of Z(k) in the complex k plane are easily found numerically. A complex zero
kn = k′

n + ik′′
n is found near nπ/a for a positive integer n. Its conjugate knc = −k′

n + ik′′
n = −k∗

n

is also a zero. The amplitude An corresponding to kn is given by

An =
(

U(k)

/
∂Z(k)

∂k

)∣∣∣∣
k=kn

. (4.8)

The amplitude corresponding to knc is Anc = −A∗
n.

The spectral density g(E) is calculated from equation (2.26). We choose units such
that ν = 1 and a = 1. In figure 1 we show the spectral density for λ = 10. It is
easily checked numerically that its integral is unity. The spectrum shows a sharp peak
near π2/a2. The corresponding root of Z(k) = 0 is k1 = 2.878 + 0.067i and the amplitude A1

is A1 = −1.510 + 0.351i. Clearly, the poles k1 and k1c dominate, and as a first approximation
to the function �(k) one can use

�1(k) = A1

k − k1
+

A1c

k − k1c

. (4.9)

9
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Figure 1. Plot of the energy spectrum g(E) defined in equation (2.26) for the model with delta-
function potential with parameters specified below equation (4.8) and initial wavefunction given
by equation (4.1).

Similarly, one can include the first n poles up to kn and the corresponding conjugates up to
knc, and define an approximate function �n(k). It is clear that the approximation improves as
n increases. For the above numerical example, the plot of the approximate spectral function
g1(E) cannot be distinguished from that of g(E) on the scale of figure 1.

Expression (4.9) gives rise to a factor of the Breit–Wigner form [15], the quantum-
mechanical analog of the Lorentz resonance of electromagnetic theory,

fBW(E) = γ 2
1

(E − E1)2 + γ 2
1

, (4.10)

with resonance energy E1 and half-width γ1 given by

E1 = ν
(
k′2

1 − k′′2
1

)
, γ1 = 4νk′

1k
′′
1 . (4.11)

Hence one can define the lifetime τ1 as

τ1 = 1

γ1
= 1

4νk′
1k

′′
1

. (4.12)

The lifetime can be compared with the mean escape time defined in equation (2.16). In this
case P∞ = 0. In the integral in equation (2.28), there is a small negative contribution from
positive values of the frequency. In figure 2, we compare the rates γ1 and γM = 1/τM for the
delta-function potential as a function of the strength L = λ/ν. From equation (4.5) one finds
by expansion for large L

k′
1 = π

a

[
1 − 1

L
+

1

L2

]
+ O

(
1

L3

)
, k′′

1 = π2

aL2
+ O

(
1

L3

)
, (4.13)

so that with λ = Ka the rate γ1 decreases as

γ1 = 4π3ν3

K2a4
+ O

(
1

K3

)
(4.14)

with increasing strength of the potential. The decrease is only with a power law, not
exponential.

The approximate wavefunction corresponding to equation (3.16) and the approximation
equation (4.9) is given by

f1(x, t) = iB(0)[A1N0(−iν, ik1; x − a, t) + A1cN0(−iν, ik1c; x − a, t)]�(x − a)�(t).

(4.15)

10
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Figure 2. Plot of the mean rate of escape γM for the model with delta-function potential as
a function of the strength of the potential (solid curve), compared with the rate γ1 given by
equation (4.11) (dashed curve).
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Figure 3. Plot of the absolute value of the approximate wavefunction given by equation (4.15) for
the model with parameters specified below equation (4.8) at times t = 5 (left peak) and t = 15
(right peak).

The wavefunction describes an outgoing wave pulse moving to the right with an approximate
speed of k′

1/m. In figure 3, we show the absolute value |ψ1(x, t)| = |f1(x, t)| as a function
of x at two subsequent times. From equation (3.24), we find the corresponding approximate
functions

F1(t) = iB(0)[A1N0(−iν, ik1; 0, t) + A1cN0(−iν, ik1c; 0, t)]�(t),
(4.16)

G1(t) = −B(0)[A1k1N0(−iν, ik1; 0, t) + A1ck1cN0(−iν, ik1c; 0, t)]�(t).

The approximate probability current J1(t) can be calculated from equation (2.21), and
the corresponding occupancy P1(t) by integration of the current from t to infinity. Higher
order corrections can be calculated by including more poles. This leads to small ripples on
the wavefunction, but hardly affects the current J (t) or the occupancy P(t). In figure 4 we
show the absolute value of the wavefunction in the outer space x > c at time t = 10 for
the above example, and compare with the value obtained in the first approximation. Similar
behavior for λ = 100 is seen in figure 2 of van Dijk and Nogami [11]. In figure 5 we show

11
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Figure 4. Plot of the absolute value of the wavefunction ψ(x, t) for the model with parameters
specified below equation (4.8) at time t = 10 compared with that of the approximate wavefunction
given by equation (4.15) (smooth curve).
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Figure 5. Plot of the occupancy P(t) as a function of t for the same model as in figures 3 and 4.

the corresponding occupancy P(t), which is a smoothly decaying function on the scale of the
figure. The first approximation P1(t) calculated from equation (4.16) cannot be distinguished
on the scale of the plot. The ripples seen in figure 5.3 of Razavy [4] are unrealistic, and are
due to truncation to only three pairs of terms in a sum of type (3.24).

In the numerical example, the decay time calculated from equation (4.13) is τ1 = 1.306.
The mean escape time τM can be calculated from equation (2.27) or from equation (2.28). In
the present case P∞ = 0. From equation (2.27) we find τM = 1.313, whereas equation (2.28)
yields τM = 1.3146. The second calculation involves a simple quadrature, and will yield the
more accurate result.

In figure 6 we plot log|J (t)| on a logarithmic timescale. This shows that at long times the
current rapidly tends to zero. At long times, when the current is already quite small, it shows
oscillations, before finally decaying with a t−4 power law. Similar curious behavior of the
occupancy P(t) for λ = 6 was shown in figure 8 of van Dijk and Nogami [11]. In the work of
Garcı́a-Calderón et al [10] the occupancy P(t) decayed smoothly, and with an incorrect power
law. In a recent work, Garcı́a-Calderón et al [23] have shown that the coefficient of the t−3
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Figure 6. Plot of the logarithm of the probability current J (t) for the same model as in figure 5 as
a function of log10t .
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Figure 7. Plot of the probability current J (t) for the same model as in figure 5 as a function of t
at long times.

long-time tail in P(t) and in the survival probability S(t) can be found from a steepest-descent
calculation. They find good agreement with the calculation from the sum of modes, similar to
that performed here.

In order to explain the long-time behavior of the probability current shown in figure 6,
we use the first approximation corresponding to the pair k1, k1c. For example, J1(t) passes
through zero many times in the interval 24 < t < 50 before finally tending to zero with a
positive t−4 long-time tail. The actual current J (t), calculated with a larger number of terms,
passes through zero many times in the same interval and is numerically close. In figure 7 we
show the behavior of J (t) in the time interval 45 < t < 65. The oscillations in the current
before the power law sets in are due to interference of long-time waves, corresponding to the
sum of at least two N0 functions. The waves corresponding to k1 and k1c run in opposite
directions.

If the initial wavefunction is chosen as ψ(x, 0) = ϕmj (x), instead of the ground state
given by equation (4.1), then there will be a corresponding resonance wave number kmj , and
similar calculations can be performed. There is an approximate one-line approximation to the
spectrum found from the analogue of equation (4.9). Except for the change in complex wave
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number the approximate wavefunction has the same structure as in equation (4.15). A linear
superposition of such initial states can also be considered.

5. Cut-off parabolic potential

As a second example we consider a cut-off parabolic potential given by

V (x) = [
V0 + 1

2mω2
0x

2]�(a − x), (5.1)

with the cutoff at a > 0. For V0 < 0 the potential can have one or more bound states. As
initial wavefunction ψ(x, 0) we choose

ϕm0(x) = Nm0 exp

(
−mω0

2
x2

)
�(a − x), (5.2)

corresponding to the ground state of the particle in the modified potential

Vm(x) = V0 + 1
2mω2

0x
2, (5.3)

defined for all x. It is convenient to choose units such that ω0 = 1 and m = 1, so that ν = 1
2 .

Then the normalization factor Nm0 becomes

Nm0 =
√

2

π1/4
√

1 + erf(a)
. (5.4)

The ground-state energy is Em0 = V0 + 1
2 . The function fr(x, s) in equation (2.9) is given by

fr(x, s) = H

(
1

2
k2 − Em0,−x

)
e(a2−x2)/2, for −∞ < x < a,

= P sin kx + Q cos kx, for x > a, (5.5)

where H(n, x) is the Hermite function [24], usually denoted as Hn(x). The coefficients P and
Q are found from continuity of the wavefunction and its derivative at x = a. We do not need
the explicit expressions, since again we take the exit point c just to the right of x = a. Then
the exit amplitude B(s) takes the form of equation (3.2) with function Z(k) given by

Z(k) = (1 + 2V0 − k2)H
(

1
2k2 − 3

2 − V0,−a
)

+ (ik − a)H
(

1
2k2 − 1

2 − V0,−a
)
, (5.6)

and function U(k) given by

U(k) = Z(0)H
(

1
2k2 − 3

2 − V0,−a
)/

H
(− 3

2 − V0,−a
)
. (5.7)

At s = 0

B(0) = 2i e−a2/2Nm0H
(− 3

2 − V0,−a
)/

Z(0). (5.8)

The expansion coefficient m1 in equation (3.4) is given by

m1 = −iH
(− 1

2 − V0,−a
)/

Z(0). (5.9)

The zeros of Z(k) in the complex k plane are easily found numerically. For V0 � 0 a
complex zero kn = k′

n + ik′′
n is found near

√
2n − 1 + 2V0 for a positive integer n. Its conjugate

knc = −k′
n + ik′′

n = −k∗
n is also a zero. The amplitude An corresponding to kn is again given

by equation (4.8). The amplitude corresponding to knc is Anc = −A∗
n.

First, we consider the case V0 = 0, a = 2, for which the potential V (x) has no bound
states. The numerical value of the smallest zero of Z(k) is k1 = 0.989 + 0.020i. The
corresponding amplitude is A1 = −0.386 + 0.264i. For the chosen initial state the poles at k1

and its conjugate k1c dominate. The spectral density g(E), calculated from equation (2.26),
shows a nearly Lorentzian line, centered about E1 = 0.488 and of half-width γ1 = 0.040.
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The one-line approximation provided by equation (4.9) works again quite well. The spectral
line found from the approximate function g1(E) cannot be distinguished from the exact one
on the scale of the plot. The time dependence of the occupancy P(t) is qualitatively the
same as for the example in section 4. The lifetime is τ1 = 24.949, and the mean escape
time is τM = 26.256. The time dependence of the current is qualitatively the same as before.
Between t = 450 and t = 920 the current passes through zero many times, before finally
decaying to zero with a small positive t−4 long-time tail. In the time interval 450 < t < 920,
the asymptotic expression (3.26) is not yet adequate for the smallest zero k1.

We compare with the approximate expressions for the energy E1 and the half-width γ1

derived by Gurvitz et al [30, 19]. Taking the separation distance R in their two-potential
approach at a = 2 we find from equations (9) and (10) in [19] the approximate values
E1 = 0.481 and γ1 = 0.036, fairly close to the exact values E1 = 0.488 and γ1 = 0.040
found above. The modified two-potential approach of [19] with Gk(x) = cos kx and r = 2
in their equation (16) yields the improved value E1 = 0.490. The last factor in equation (16)
cannot be replaced by unity. For this example their equation (23) is not a good approximation
to the half-width in equation (9).

Using identities derived elsewhere [25] one can show that for V0 = 0 the asymptotic
behavior of the zero k1 for large a is given by

k1 ≈ 1 − a√
π

e−a2
+

2i√
π

e−a2
(V0 = 0, as a → ∞). (5.10)

This implies that asymptotically the rate γ1 is given by

γ1 ≈ 4√
π

e−a2 = 4√
π

e−2V (a) (V0 = 0, as a → ∞). (5.11)

Gamow’s expression for the lifetime [3], based on a WKB-argument, yields for the present
case

γG ≈ 8 e−2V (a) (V0 = 0, as a → ∞). (5.12)

This differs in the prefactor from equation (5.11), and overestimates the actual rate by a factor
of 3.54.

Next we consider the case V0 = −1, a = 2. In this case there is a single bound state at
E0 = −0.507, corresponding to the zero kb = −1.007i of the function Z(k). The amplitude of
the pole is Ab = 0.235i. There is a corresponding zero at kbc = 1.122i with amplitude −1.366i.
The pair nearest to the origin of the complex k plane is at k1 = 0.949 + 0.157i and k1c = −k∗

1
with amplitudes A1 = 0.035 + 0.088i and A1c = −A∗

1. For the bound state corresponding to
kb = −iκb, the wavefunction for x > a decays exponentially as Qb exp(−κbx). For x < a it
is given by

ϕ0(x) = N0 H
(

1
2k2

b + 1
2 ,−x

)
e−x2/2. (5.13)

The coefficient Qb is evaluated from the conditions of continuity of the wavefunction and its
derivative at a = 2. This yields Qb = 1.433. Using this one finds for the normalization
constant N0 = 0.742. The probability P∞ of remaining in the bound state is calculated as the
square of the overlap integral

I00 =
∫ a

−∞
ϕ0(x)ϕm0(x) dx. (5.14)

This yields P∞ = 0.989. The probability of escape is therefore quite small. The spectrum
of emitted waves g(E), as calculated from equation (2.26), is shown in figure 8. An
approximation �2(k) to the function �(k) can be evaluated from the four dominant poles
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Figure 8. Plot of the energy spectrum g(E) for the model with parabolic potential with cutoff at
a = 2 and potential minimum V0 = −1 for decay from the ground state at energy Em0 = − 1

2
(solid curve) compared with that calculated from the approximation with four dominant poles
(dashed curve).

listed above. The agreement of the spectral function g2(E) with the exact spectrum g(E)

at small E is only modest, as shown also in figure 8, but at higher values of E it provides a
smooth interpolation through the many peaks of g(E). The time-dependent occupancy P(t),
as well as the approximation P2(t) to this function corresponding to the dominant poles, can
be calculated as before.

Finally, we change the initial state to the first excited state

ϕm1(x) = Nm1x e−x2/2�(a − x), (5.15)

with the normalization factor Nm1. The function U(k) changes to

U(k) = Z(0)
3 + 2V0

k2 − 3 − 2V0

a(k2 − 1 − 2V0)H
(

1
2k2 − 3

2 − V0,−a
)

+ H
(

1
2k2 − 1

2 − V0,−a
)

a(1 + 2V0)H
(− 3

2 − V0,−a
) − H

(− 1
2 − V0,−a

) .

(5.16)

The value B(0) becomes

B(0) = 2i e−a2/2Nm1
a(1 + 2V0)H

(− 3
2 − V0,−a

) − H
(− 1

2 − V0,−a
)

(3 + 2V0)Z(0)
. (5.17)

The positions of the poles are the same as before, but the amplitudes change. We consider the
potential with V0 = −1, a = 2. For the bound state amplitude one now finds Ab = −0.001i,
for the amplitude of the pole at kbc one finds Abc = 0.157i and for the amplitude of the pole
at k1 one finds A1 = −0.404 + 0.359i. From the overlap integral I01, defined in analogy to
equation (5.14), one finds that the probability of remaining in the bound state ϕ0(x) is only
P∞ = 0.0001. The emission spectrum shows a fairly broad peak near E = 0.5. In figure 9
we show the spectrum g(E), as calculated from equation (2.26), as well as the approximate
spectral function g2(E) calculated from the four dominant poles. The lifetime is τ1 = 3.351.
As noted at the end of section 2, the mean escape time given by equation (2.28) diverges if
there is a bound state. In the following section we define a modified mean escape time which
is finite.
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Figure 9. Plot of the energy spectrum g(E) for the model with parabolic potential with cutoff at
a = 2 and potential minimum V0 = −1 for decay from the first excited state at energy Em1 = 1

2
(solid curve) compared with that calculated from the approximation with four dominant poles
(dashed curve).

6. Solution for all time

It is clear from a comparison of equation (2.14) with equation (9) of van Dijk and Nogami
[11] that the two solutions differ. In case there are no bound states, then the wavefunction
ψ(x, t), when written as a superposition of stationary states, involves time factors exp(−iωt)

with only positive frequencies ω, corresponding to positive energy. Our expression for
ψ(x, t) = f ∗(x, t) involves negative as well as positive frequencies. It is evident from
equation (2.14) that the negative frequencies correspond to non-propagating waves. Both
solutions to the problem must be identical for t > 0. The solution in equation (9) of van
Dijk and Nogami is also valid for t < 0. It contains incoming waves which build up the
wavefunction to its value at t = 0. We have solved the initial-value problem for the given
wavefunction ψ(x, 0) at t = 0 by the method of Laplace transform, and our solution vanishes
identically for t < 0.

The relation between the two solutions is therefore clear. If we define the Fourier transform
of the wavefunction by

�(x, ω) =
∫ ∞

−∞
ψ(x, t) eiωt dt, (6.1)

then it can be decomposed [21, 26] into a ‘positive-frequency part’ �+(x, ω) and a ‘negative-
frequency part’ �−(x, ω),

�(x, ω) = �+(x, ω) + �−(x, ω), (6.2)

defined by [2, 4]

�+(x, ω) =
∫ ∞

0
ψ(x, t) eiωt dt, �−(x, ω) =

∫ 0

−∞
ψ(x, t) eiωt dt. (6.3)

The positive-frequency part �+(x, ω) suffices to reconstruct the solution ψ(x, t) for t > 0 by
an inverse Fourier transform. Our solution is just the positive-frequency part of the solution
in equation (9) of van Dijk and Nogami, and corresponds to their equation (16), which holds
only for t > 0. The solution simplifies because information which is superfluous for t > 0 is
discarded. The function �+(x, ω) is analytic in the upper half of the complex ω plane. This
corresponds to the right half of the complex s plane, since s = −iω. Explicitly,

�∗
+(x, ω) = f̂ (x, iω∗). (6.4)
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Since we have chosen ψ(x, 0) to be real, the wavefunction for t < 0 can be obtained from
that for t > 0 by the relation

ψ(x,−t) = ψ∗(x, t). (6.5)

The relation implicitly assumes that the wavefunction at t = 0 is built up by incoming waves.
What is observed by a detector in the outer space should be calculated from the wavefunction
for x > c and t > 0, as given by equation (2.14).

Our solution f (x, t) = ψ∗(x, t) for t > 0 involves for x > c a continuum of waves
propagating to the right, a continuum of non-propagating solutions and a discrete set of
oscillatory bound solutions. Since we consider the conjugate wavefunction, the propagating
solutions correspond to negative frequency, or positive energy, the other ones to positive
frequency, or negative energy. We can make the separation explicit by writing

f (x, t) = fp(x, t) + fn(x, t), (6.6)

where by comparison with equation (2.14)

fp(x, t) = 1

2π

∫ 0+iε

−∞+iε
B(−iω) e−ik(x−c)−iωt dω,

(6.7)

fn(x, t) = 1

2π

∫ ∞+iε

0+iε
B(−iω) e−ik(x−c)−iωt dω (x > c).

The poles of B(−iω) for positive ω give rise to the bound state contributions to fn(x, t). The
remainder of fn(x, t) is a transient decaying to zero by dispersion.

We define functions Fp(t), Fn(t) and Gp(t),Gn(t) from the analogue of equation (2.20).
The part of the probability current corresponding to propagating waves is then given by

Jpp(t) = 2ν�F ∗
p (t)Gp(t). (6.8)

This will correspond to the pulse seen by a detector at some distance from the source. In
analogy to equation (2.28) the mean escape time for the pulse is defined by

(1 − P∞)τMp = ν

π
�

∫ 0+iε

−∞+iε

dF̂ ∗(−iω)

dω
Ĝ(−iω) dω. (6.9)

For the example with the delta-function potential treated in section 4 this takes the value
τMp = 1.3150, almost the same as τM = 1.3146. For the first excited state decaying and
escaping from the parabolic potential treated at the end of section 5 the value is τMp = 5.195.
This is substantially larger than τ1 = 3.351 on account of the broad spectrum.

7. Discussion

The Laplace transform of the time-dependent wavefunction for the models studied has a
concise form, and leads naturally to a decomposition of the wavefunction into a sum of wave
modes and bound states. We have shown in the last section that the sum of wave modes itself
can be decomposed into a propagating and a non-propagating part. The wavefunction in the
outer space is found in an explicit form, which is the same for all potentials. This suggests
that in a numerical solution of the Schrödinger equation [27, 28] it may be sufficient to restrict
attention to the inner space.

As initial wavefunction we have chosen one of the eigenfunctions {ϕmj (x)} for the
modified confining potential Vm(x). One can also consider a linear superposition of such
states. This would correspond to a linear superposition of expressions of the form (2.10)
for the exit amplitude. The dispersion function Z(k) in the denominator is common to all
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expressions, and only the numerator of the amplitude would change. A thermal ensemble
of initial states would lead to an averaged expression with the same denominator. At higher
temperatures a large number of zeros of the denominator contribute, and an effective method
is needed to discuss the mechanism of escape corresponding to the averaged expression. It
would be of interest to compare such a calculation with the theory of stimulated quantum
tunneling in the presence of dissipation and random forces.

The present analysis of spontaneous quantum tunneling can be carried through
straightforwardly for model systems with simple potentials, for example a parabolic well
followed by a parabolic barrier, followed by open space. Since analytic expressions are
obtained, the effect of a change in the parameters is easily explored. It would be of interest to
investigate the effect of the shape and height of the barrier on the time dependence of escape,
in analogy to the theory of escape by classical diffusion [25].
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